Learning Curves for Stochastic Gradient Descent in Linear Feedforward Networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Curves for Stochastic Gradient Descent in Linear Feedforward Networks

Gradient-following learning methods can encounter problems of implementation in many applications, and stochastic variants are sometimes used to overcome these difficulties. We analyze three online training methods used with a linear perceptron: direct gradient descent, node perturbation, and weight perturbation. Learning speed is defined as the rate of exponential decay in the learning curves....

متن کامل

Parallel Gradient Descent for Multilayer Feedforward Neural Networks

We present a parallel approach to classification using neural networks as the hypothesis class. Neural networks can have millions of parameters and learning the optimum value of all parameters from huge datasets in a serial implementation can be a very time consuming task. In this work, we have implemented parallel gradient descent to train multilayer feedforward neural networks. Specifically, ...

متن کامل

Learning Rate Adaptation in Stochastic Gradient Descent

The efficient supervised training of artificial neural networks is commonly viewed as the minimization of an error function that depends on the weights of the network. This perspective gives some advantage to the development of effective training algorithms, because the problem of minimizing a function is well known in the field of numerical analysis. Typically, deterministic minimization metho...

متن کامل

Learning Stochastic Feedforward Neural Networks

Multilayer perceptrons (MLPs) or neural networks are popular models used for nonlinear regression and classification tasks. As regressors, MLPs model the conditional distribution of the predictor variables Y given the input variables X . However, this predictive distribution is assumed to be unimodal (e.g. Gaussian). For tasks involving structured prediction, the conditional distribution should...

متن کامل

Online Learning, Stability, and Stochastic Gradient Descent

In batch learning, stability together with existence and uniqueness of the solution corresponds to well-posedness of Empirical Risk Minimization (ERM) methods; recently, it was proved that CVloo stability is necessary and sufficient for generalization and consistency of ERM ([9]). In this note, we introduce CVon stability, which plays a similar role in online learning. We show that stochastic g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computation

سال: 2005

ISSN: 0899-7667,1530-888X

DOI: 10.1162/089976605774320539